Reminder: Login to access new features and members-only content!

Register to be a member of our community. Its easy!

Register a new account

Already a member?

Log In here!

Donate

Did you find our content interesting or helpful? Help support the IPFD enhance health, well-being and welfare for dogs everywhere.

Jump to content

Correlation of neuter status and expression of heritable disorders


    cgelogolg.pngCorrelation of neuter status and expression of heritable disorders

    Janelle M. Belanger, Thomas P. Bellumori, Danika L. Bannasch, Thomas R. Famula and Anita M. Oberbauer

    ucdavisvetmed.gif

    US based - Medical records for 90,090 individual dogs seen at the University of California William T. Pritchard Teaching Hospital from 1995 through the end of 2010

     

    Background

    "Gonadectomy, or neutering, is a very common surgery for dogs having many positive effects on behavior, health, and longevity. There are also certain risks associated with neutering including the development of orthopedic conditions, cognitive decline, and a predisposition to some neoplasias. This study was designed specifically to identify if a correlation exists between neuter status and inherited conditions in a large aggregate cohort of dogs representing many different breeds."

    Plain English summary

    Quote

    Spaying and neutering of dogs is a well-accepted procedure in the United States and has many positive effects on behavior, health, and longevity. Although recent reports suggest that spaying and neutering may increase the occurrence of some joint disorders and some cancers, the relationship between inherited diseases and spay/neuter status has not fully been explored. The present study evaluated the prevalence and risk of genetic diseases, both early and late onset, in intact and neutered male and female dogs that were seen over a 15-year period at a university teaching hospital. Spayed and neutered dogs were at less risk for early and congenital conditions (aortic stenosis, early onset cataracts, mitral valve disease, patent ductus arteriosus, portosystemic shunt, and ventricular septal defect) than intact dogs. Neutered male dogs were at less risk for bloat (gastric dilatation volvulus) and dilated cardiomyopathy, whereas spayed females were at increased risk for intervertebral disk disease. Spaying or neutering in both sexes was significantly associated with an increased risk for cancers (hemangiosarcoma, hyperadrenocorticism, lymphoma, mast cell tumor, and osteosarcoma), ruptured anterior cruciate ligament, and epilepsy. For elbow dysplasia, hip dysplasia, lens luxation, and patellar luxation neutering had no significant effect on the risk for those conditions. A dog that was spayed or neutered was associated with a reduced risk of vehicular injury, a condition chosen as a control. The complexity of the interactions between spaying/neutering and inherited conditions underscores the need for reflective consultation between the client and the clinician when considering the procedure. The convenience and advantages of spaying or neutering dogs that will not be included in a breeding program must be weighed against possible risk associated with the procedure. Additionally, if owners elect to keep their dogs intact, they must then assume responsibility to vigilantly guard against unplanned litters.

     

    Additional file 1: Table S1. Number of cases and controls for each condition by breed used in the study. (XLSX 48 kb)
     
    Additional file 2: Figures S1 and S2. Heat map of risk associated with neutering in females (Figure S1) and males (Figure S2) by dog breed, assembled into AKC breed groupings. Heat map represents classification of one of five categories: I. Posterior probability less than 0.05, strong indication that neutering reduces disease prevalence (green); II. Posterior probability between 0.05 and 0.10, evidence suggesting that neutering can reduce disease prevalence (light green/teal); III. Posterior probability between 0.10 and 0.90, no convincing evidence that neutering impacts disease prevalence (blue); IV. Posterior probability between 0.90 and 0.95, evidence suggesting that neutering can increase disease prevalence (peach); and V. Posterior probability greater than 0.95, strong indication that neutering increases disease prevalence (red). Refer to Additional file 1: Table S1 for breed names associated with breed codes.
     
     
     

Edited by Ann Milligan


  Report Entry


User Feedback

Recommended Comments

There are no comments to display.



Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Add a comment...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.


×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.